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Abstract. We have analysed the collective behaviour of an assembly of coupled oscillators
interacting through Hebbian synaptic weights designed to store information about the phase
of each element. Our study focuses on the dynamic properties of the population showing the
existence of a relevant time-scale, useful for the processing of information.

The study of the collective behaviour of assemblies of coupled oscillators is an interesting
topic. Models accounting for the oscillatory properties of individual biological neurons have
appeared during the last thirty years but now the studies focus on the behaviour of large
populations of them. The interest comes from some experiments performed on the visual
cortex of cats [1, 2] which show that an external stimulus may induce synchronization on
the temporal activity of neurons. These coherent oscillations could be a mechanism of
feature linking [3].

But the mutual synchronization between members of a given population is not a new
phenomenon: it appears frequently in biological systems, and has been analysed for years
[4]. Synchronous flashing of swarms of fireflies [5] or coherent rhythms between cardiac
pacemaker cells are some examples [6]. A possible way to model the features of these
systems is to consider the whole population as an assembly of nonlinear oscillators, each
running at its natural frequency picked up from a random distribution and interacting with
each other through long-ranged couplings. Thus each oscillator tries to run independently at
its own frequency while the coupling tends to synchronize it to all others. When the coupling
is sufficiently weak, the oscillators run incoherently whereas above a certain threshold
collective synchronization appears spontaneously. As a particular case, Kuramoto [7]
proposed a mathematically tractable model of phase oscillators whose dynamical evolution
is described by the equations

dθi

dt
= ωi + γi(t) +

N∑
j=1

Kij sin(θj − θi) . (1)

Here θi and ωi represent the phase and natural frequency (randomly distributed over the
population with a density g(ω)) of the ith oscillator, Kij the coupling strength between
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oscillators,N the size of the population andγi(t) Gaussian white noise with zero mean and
correlation

〈γi(t)γj (t
′)〉 = 2Dδij δ(t − t ′) D > 0 . (2)

Three elements play a relevant role in this model. The first one concerns the features of
the distribution of natural frequencies of the population. It has been shown that the order
of the transition from the incoherent state to the synchronized state depends on whether
g(w) is unimodal (non-increasing forw > 0) [8] or bimodal [9]. The second element is the
external noise acting over the system given by the constant coefficientD. Its basic effect
is to shift the critical point above which the incoherent state becomes unstable.

Finally, the third element and, perhaps, the most interesting, accounts for the explicit
form for the couplings. The simplest choice is to assume infinite-range interactions equal
for all members of the population (Kij = K/N, K > 0), studied originally by Kuramoto
and subsequent authors [8, 10]. Randomness in the couplings is another ingredient whose
effect on the collective behaviour of the oscillators has been studied as well [11, 12]. If
the disorder is sufficiently strong (frustration) new phases may appear whose nature shows
clear analogies with the glassy or mixed phases typical of disordered systems such as
spin glasses. In another range of interest more sophisticated prescriptions such as stimuli-
dependent couplings [13, 14] have successfully reproduced experimentally observed features
in visual processing although their analytical study is rather difficult. Following this line
of thought, a natural question is to wonder whether large populations of coupled oscillators
could store information after a proper choice of the matrixKij , as in models of attractor
neural networks (ANN).

Such a problem has been analysed by several authors. Cook [15] considered a static
approach (no frequencies) where each element of the system is modelled as aq-state clock.
Furthermore, a Hebbian learning rule was proposed as a coupling. In this case, since theJij

are symmetric it is possible to define a Lyapunov function whose minima coincide with the
stationary states of (1). Cook solved the problem by deriving mean-field equations in the
replica-symmetric approximation, finding that in the limitq → ∞ and zero temperature, the
stationary storage capacity of the network isαc = 0.038, much lower than in the Hopfield
model (q = 2) for whichαc = 0.14, as well as forq = 3 whereαc = 0.22. A more general
analysis was performed by Gerlet al [16] who followed a standard formalism derived by
Gardner [17] to calculate the volume of solutions satisfying stability conditions. In this
way they showed that in the optimal case and for a fixed stabilityκ the storage capacity
decreases asq increases but the information content per synapse grows ifκ scales asq−1.
Although this final result seems to be promising it has serious limitations given by the size
of the network (sinceN > q) and also because the time required to reach the stationary state
is proportional toq, as has been corroborated in [18]. Other models with similar features
display the same type of behaviour [19].

All these outcomes seem to indicate that networks of analogue neurons (with clock
symmetry) are not suitable to store information. However, in all these studies only the
long-time behaviour is considered. We want to show that for these systems the most
interesting properties are associated to the transient not only from a dynamical standpoint
but also from a computational point of view. This will be proven analytically and by
simulations. Centring our discussion on the ability of the system to work as an associative
memory, we will show the existence of a time-scale that might be useful for the processing
of information. Our main result is that the system approaches a given memory in a short
time tm for any storage capacity. This is a dynamical effect, in the sense that aftertm the
system goes to a steady state with an overlap with the memory that usually is much smaller
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than that reached attm.
Let us consider that an assembly ofN oscillators which can carry information about

their phase. As usual we want to storep sets of random patterns (phases){ξ} and a simple
way to do this task is to assume that the synaptic efficacies (couplings) are given by

Kij = K

N

p∑
µ=1

cos(ξµ

j − ξ
µ

i ) (3)

which preserves the basic idea of the Hebb rule but now adapted to the structure of our
problem. The specific learning rule showed in (3) plus the dynamics given by (1) define
the model. To analyse it, it is convenient to define the following order parameters:

c
µ
±eiφµ

± = 1

N

∑
k

ei(θk±ξ
µ
k ) (4)

wherec
µ
± measures the correlation between the state of the system and the patternµ, and

φ
µ
± give information about the mean phase. Equation (1) can be written in terms ofc and

φ as

dθi

dt
= ωi + K

2

p∑
µ=1

[
c
µ
− sin(φµ

− − θi + ξ
µ

i ) + c
µ
+ sin(φµ

+ − θi − ξ
µ

i )
] + γi(t) (5)

which turns out to be the dynamics implemented in our simulations. Implicit under this
expression is the additional assumption of a parallel updating ofθ which will remain present
in all our studies.

The first result we want to show is the dynamical behaviour of the state of the system
starting from an initial configuration correlated with a given patternµ. As usual, this
information can be written in terms of the overlapmµ = cµ cosφµ. By now, we will
consider that all the oscillators are identical. The effect of a distribution of frequencies will
be discussed later. The typical time evolution ofmµ is shown in figure 1(a) in the absence
of noise (D = 0), and for a low loading (α = 0.02). In contrast, with a conventional
ANN where we should expect a monotonic increase of the overlap up to the stable state
(remember that the storage capacity is around 0.04 and therefore we are working belowαc),
here the overlap increases for very short times, reaches a maximum value (unstable) in a
few iterations and finally relaxes to a stationary (stable) state several seconds latter. This
behaviour is characteristic of the model, it appears in a wide range of situations showing a
complex structure of dynamical attractors.

To study this phenomenon analytically it is necessary to apply a formalism which is
able to compute the dynamics of the network for all time. In general, only for very diluted
systems where the connectivity between elements is of the order of lnN is it possible
to solve the problem completely [20, 21]. When the connectivity is larger the situation is
more complex because correlations at different times, described in terms of order parameters
whose numbers increase exponentially with time, play an important role and must be taken
into account [22]. As a consequence, the usual description given in terms of a finite number
of order parameters can only give information about the first time steps or in the other limit,
the stationary state. Even for the short-time regime (first step) the time evolution of the
network of oscillators display a quite different behaviour compared with standardANN. In
general, the dynamic evolution of the overlap in the first time step,m

µ

1 , depends on the
initial overlapm

µ

0 = mµ(t = 0), and on the storage capacityα, usually as a function of the
quotientmµ

0 /
√

α, which means that above a certain critical dynamic capacityαd (larger than
the stationary observed fort → ∞) the systems go away from the attractor systematically.
As an example, for the Hopfield model suchαd ≈ 0.64 [22]. Interestingly, this is not
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Figure 1. Typical evolution of the overlaps defined in the text for a system of 200 oscillators
when D = 0, K = 8 andα = 0.02. Our results have been obtained by integrating (5) with
the Euler method taking as a time step1t = 0.001. In our scale one second is equivalent to
one thousand time steps. Three distributions of frequencies have been considered: (a) a static
situation given bywi = δ(w) ∀i, and two dynamic situations characterized by (b) wi = 0.2+1i

where 1i is a random variable uniformly distributed in [−0.2, 0.2] and (c) wi = 0.2 + 1i ,
1i ∈ [−0.4, 0.4]. The overlaps increase from an arbitrary initial value to a maximum one
reached at a characteristic timetm with almost no sensitivity to the distribution of frequencies.

the case for the model studied in this letter, since the network always evolves towards the
attractor and this fact does not depend on the storage capacityα. This apparently surprising
result can be proven easily by analysingm

µ

0 and its first derivative. For simplicity, we
will just consider identical oscillators and the zero temperature limit (D = 0), but it can be
generalized following the same ideas.

Let us calculate the value of the derivative of the order parameter att = 0. From the
definition of mµ

mµ = q−
µ cosφ−

µ =
〈∫ 2π

0
dθ ρ(θ, t) cos(ξµ − θ)

〉
ξµ

= 〈〈cos(ξµ − θ)〉〉 (6)

where the symbol〈〈· · ·〉〉 means the integration overθ andξµ. This equation has been written
in terms of the one oscillator probability densityρ(θ, t, ξ) solution of the Fokker–Planck
equation

∂ρ

∂t
= D

∂2ρ

∂θ2
− ∂

∂θ
(ρv) (7)

where the drift velocity is given by

v(θ, t, ξ, η) =
[
ω + K

2

p∑
µ=1

[
m

µ
+ sin(φµ

+ − θ − ξµ) + m
µ
− sin(φµ

− − θ + ξµ)
]]

. (8)



Letter to the Editor L13

Figure 2. Values ofmµ(t = 0) and forṁµ(t = 0) as a function ofα for a network of identical
oscillators withN = 400, K = 1 andD = 0. The full curves denote the theoretical results
while the full circles come from simulations and are an average over 25 samples. When not
shown the error bars are of the size of the symbols.

To perform the derivative of (6) we have assumed that the initial configuration isθi = ξ
µ

i +zi

with zi a random variable uniformly distributed in the interval [−d, d]. The generalization
to other probability distributions is straightforward. Now, by using the Fokker–Planck
equation (7) forD = 0, and integrating by parts we lead to

ṁµ =
〈∫ 2π

0
dθ ρ(θ, t)θ̇ sin(ξµ − θ)

〉
ξµ

= 〈〈sin(ξµ − θ)θ̇〉〉 (9)

yielding

mµ(t = 0) = sind

d
(10)

and

ṁµ(t = 0) = K sind

4d

(
1 − sin 2d

2d

)
. (11)

These results deserve several comments. First of all, we observe thatṁ is independent of
the storage capacityα, so the very short time dynamics of the system is always the same
no matter how many patterns are stored in the network. Figure 2 shows perfect agreement
between theory (full curve) and the simulations for a wide range of loadings. This result has
no counterpart inANN. On the other hand, there is a dependence on the coupling strength
K and on the variance of the initial distribution, given in terms ofd. The larger the value
of K the faster the retrieval process. Figure 3 shows the variation ofṁµ in terms ofd
and the excellent agreement with the simulations. Notice that the negative region does not
mean that the state of the system goes away from the memory since it can only be reached
whenm is negative. In other words, ifmµ > 0 thenṁµ > 0.



L14 Letter to the Editor

Figure 3. Variation of ṁµ(t = 0) as a function ofd for a network of identical oscillators with
N = 400,K = 1 andD = 0. The full curve denotes the theoretical result while the full circles
come from simulations and are an average over 100 samples. When not shown the error bars
are of the size of the symbols.

It is remarkable to realize that these results imply the existence of a characteristic timetm
for which the overlap reaches a maximum. Then, the maximum retrieval of information
(understood as the recall of a given pattern) is not associated with the stationary state but
to the transient and, therefore, this is evidence of a time-scale that could make the system
useful for computational purposes (as an associative memory), and by extension, relevant
for the processing of information. Again, we want to stress that this behaviour occurs
for any storage capacity. Of course, asα increases the peak becomes less important and
is observed at shorter times. Recently, Coolen and Sherrington [23] have developed a
formalism that gives the correct dynamical behaviour of the system at short time-scales and
also fort → ∞. This technique could give information about the features oftm. This study
is currently in progress.

To ensure that the system works as an associative memory intm is not sufficient to
prove the existence of the peak. It is also relevant to determine the size of the basins of
attraction of the dynamic attractors. Figure 4 shows that for very low capacities the basins
are enormous, as in other Hebbian models ofANN, and for short times it is possible to
recall a given memory even for very small initial overlaps. As usual, a further increase of
α implies a reduction of the basins of attraction.

Up to now, we have considered systems made of identical oscillators. If we consider a
distribution of frequencies, the state of the system, described by anN -dimensional vector
whoseith component is the phase of theith oscillator, is changing continuously in time.
However, this is not a problem since it is possible to store information as a difference
of phases between pairs of oscillators, a quantity described by the two-point correlation
〈cos(θi − ξ

µ

i − θj + ξ
µ

j )〉, that may remain constant in time. In this way the attractor should



Letter to the Editor L15

Figure 4. Basins of attraction of the dynamic attractors for different storage capacitiesα = p/N .
We have considered a network ofN = 200 oscillators,K = 8, D = 0 and a distribution of
frequencies given by the situation (a) described in figure 1.

be understood as a kind of phase locking and if the initial state is correlated with one of
the embedded patterns, the final state will also have a macroscopic correlation with the
same pattern providedp is below a critical value. This special characteristic of the model
holds because of the particular form of the learning rule given by (3). The maximum of the
overlap is quite robust to a distribution of frequencies as we can see in figure 1(b) and (c).
In contrast, the stationary properties of the model depend strongly ong(w) [24].

Finally, we would like to comment on some recent results obtained by Aoyagi [25] in
a similar model. This author considers a network of oscillators where not only the phase
but also the amplitude evolves in time (in contrast to our model where the amplitudes are
fixed). He shows that in this system the overlap evolves monotonously from the initial
configuration to the attractor without displaying any sort of peak. However, this is not in
contradiction with our results since he works in the limit of sparse coding, that is, in the
limit where the majority of oscillators have zero amplitude. In this regime, it is well known
that the storage capacity of the network increases dramatically. In particular, for Hopfield-
like models it grows asα ≈ 1/a ln a wherea is the level of sparseness. We have checked
his model far from the sparse coding limit and the behaviour is in perfect agreement with
our outcomes (the peak appears).

We would like to thank A Diaz-Guilera, L Abbott and A C C Coolen for fruitful discussions
and A Corral for a careful reading of the text. We also acknowledge financial support from
DGYCIT under grant no PB94-0897.
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